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ABSTRACT
 
The dominance, size, and sociological position of tree species are essential components of 
natural forest patterns, providing critical information for understandinh forest dynamics. These 
patterns can be influenced by a variety of factors. This study aimed to evaluate the effectiveness 
of using spectral, hydrological, and geographical variables to estimate aboveground carbon 
stock (AGC) across four canopy strata, defined by diametric percentiles, in a Brazilian Atlantic 
Forest remnant. Our methodology, which employed machine learning techniques (Random 
Forest - RF + Genetic Algorithm - GA) and Multiple Linear Regression (MLR) to model AGC, 
proved to be highly efficient, as evidenced by our results. We observed a wide range of AGC 
values, from 0.37 to 467.71 MgC.ha-1, with an average of 77.4 MgC.ha-1. Trees in the 30th, 60th, 
and 90th percentiles contributed, respectively, 97.32%, 87.74%, and 52.02% of the total AGC. 
Spectral and hydrological variables combined with basal area explain AGC stock. Our findings 
demonstrate the robustness of machine learning techniques and MLR methods in obtaining 
accurate carbon estimates and generating an optimized dataset. Trees within the 30th percentile 
represent a smaller portion of the total AGC, and their removal does not interfere with the 
relationship between AGC and spectral variables.
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RESUMO – A dominância, tamanho e posição 
sociológica das espécies arbóreas são aspectos 
cruciais para os padrões naturais das florestas, 
fornecendo informações de grande relevância. 
Esses padrões podem ser influenciados por 
uma série de fatores. Assim, o objetivo deste 
estudo foi avaliar o uso de variáveis espectrais, 
hidrológicas e geográficas para estimar o 
estoque de carbono acima do solo (AGC) 
em quatro estratos de dossel definidos por 
percentis diamétricos em um remanescente 
de Mata Atlântica brasileira. Utilizamos 
técnicas de aprendizado de máquina (Random 
Forest - RF + Algoritmo Genético - GA) 
e Regressão Linear Múltipla (MLR) para 
modelar o AGC. Nossos resultados indicam 
uma alta variação nos valores de AGC nas 
parcelas, variando de 0,37 a 467,71 MgC.ha-

1, com média de 77,4 MgC.ha-1. Os conjuntos 
formados por árvores nos percentis 30, 60 e 90 
contribuíram, respectivamente, com 97,32%, 
87,74% e 52,02% do AGC total. As variáveis 
espectrais e hidrológicas se associam à área 
basal para explicar o estoque de AGC. Nossas 
descobertas comprovam a eficácia de ambos os 
métodos na obtenção de estimativas precisas 
de carbono e na geração de um conjunto de 
dados otimizado. Árvores no percentil 30 
representam uma parte menor do AGC total, 
e a remoção dessas árvores não interfere na 
relação entre AGC e variáveis espectrais. 

Palavras-Chave: Sensoriamento remoto; 
Hidrologia florestal; Manejo florestal

1. INTRODUCTION

The assessment of carbon stocks has 
emerged as a fundamental component in forest 
conservation and climate change mitigation 
(Seddon et al., 2020). Deforestation in tropical 
forests increases atmospheric carbon dioxide 
levels (Swamy et al., 2023). Projections 
suggest that measures to address these issues 
could significantly reduce carbon emissions, 
potentially contributing 84% of the mitigation 
in tropical regions and 66% of global mitigation 
by 2055 (Austin et al., 2020). Under these 
circumstances, tropical forests are significant 
for global carbon sink.
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MODELAGEM DO ESTOQUE 
DE CARBONO ACIMA DO 

SOLO SOB INFLUÊNCIA DO 
DOSSEL DE UMA FLORESTA

The growth rates of trees, species diversity, 
and wood density are directly influenced by 
local climatic factors (Blanc et al., 2009). 
According to Lambers and Oliveira (2019), 
air temperature, soil nutrient supply, water 
availability, and light/radiation duration 
control the physiological rules of trees. These 
environmental variables affect the ecological 
traits of trees over time and drive carbon 
accumulation dynamics in tropical forests. 
Inter-tree competition is another way to reduce 
carbon assimilation and plant carbon balance. 
The structure of the forest canopy may be a 
critical factor in underlining the dynamics of 
carbon accumulation. The forest dossel covers 
a group of strata that distinguishes a set of 
functional trees, maximum height, and light 
requirements (Fischer et al., 2014).  

Due to the passive optical sensors suffering 
from saturation, the canopy structure 
associated with optical sensor images has 
not been applied to predict the aboveground 
carbon stock (AGC) in tropical forests so 
often (Zolkos, 2013). This limitation generally 
affects the accuracy of prediction methods 
over high-density forests (Fang et al., 2012). 
Knapp et al. (2018) applied three approaches to 
predict biomass changes for a tropical lowland 
rainforest over time. Their results provide 
insight into the relationship between canopy 
height and biomass change at large scales. 
Instead of using any specific research method, 
it is possible to associate optical sensor images 
with forest plots to estimate Aboveground 
Carbon (AGC) for large-scale areas in tropical 
forests. Therefore, hydrological variables such 
as soil water storage (SWS) and throughfall 
(TF) also play a fundamental role in canopy 
recovery, leaf growth during the dry season 
for seasonal deciduous trees, and species 
occurrence under the environmental filter 
theory, contributing to understanding the 
soil-plant-atmosphere system (Bonnesoeur 
et al., 2019). This ecological perspective 
corroborates that hydrological variables drive 
the forest occurrence and the richness of tree 
species distribution. According to Fonseca et 
al. (2024), the Atlantic Forest has changed 
over the last two decades in terms of carbon 
stock. Their modeling procedure revealed a 
positive correlation between average annual 
precipitation, successional stage, and carbon. 

Models are a single representation of the 
real world, and ecological traits are difficult 
to summarize into a function. In this context, 
machine learning algorithms overcome the 
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complex behavior of the database nature, 
and most of them have high flexibility and 
accuracy (Chen et al., 2019; Blanco et al., 
2020). These algorithms are robust and 
capable of handling any variable type, dataset 
size, and linearity (Rokach, 2016; Silveira et 
al., 2019). Zhang et al. (2019) and Dang et al. 
(2019) have applied a random forest algorithm 
to predict biomass/carbon stock in Asian 
tropical forests. They highlighted the high 
potential of method accuracy and the use of 
satellite imagery variables. Nowadays, there 
is a set of papers applying the combination of 
genetic algorithm and random forest (GARF) 
to improve the random forest performance, 
as seen in Chen et al., (2019) and Miranda 
et al. (2022). Previously to the random forest 
runs, the genetic algorithm contribution lies 
in the selection variables. This automatic 
selection procedure performs many variable 
combinations to improve the random forest 
work. In the current context, we have 
investigated the response of environmental 
and spectral variables to explain the variation 
of AGC across a secondary semi-deciduous 
Atlantic Forest. Our findings addressed two 
hypotheses: (i) the canopy strata levels may 
be a critical factor in underlining the carbon, 
and (ii) the behavior of the variable type is 
symmetric or asymmetric over the canopy 
strata levels.

2. MATERIAL AND METHODS

2.1 Study area and database

The study area covers 6.35 ha of a secondary 
Semi-deciduous Atlantic Forest located at 
44°58′15′’ W and 21°13′42′ S, an altitude of 
900m, in Lavras, Minas Gerais state, Brazil 
(Figure 1). The predominant soil is Dystrophic 
Red Latosol, and Cwa is the climate according 
to the Köppen classification with rainy 
summers and dry winters (Rodrigues et al., 
2021). The wet season ranges from October to 
March and the dry season extends from April 
to September. The mean annual precipitation 
and potential evapotranspiration are 1,462 
mm and 1,254 mm, respectively, with a 
yearly mean temperature of 20.3°C, ranging 
from 16.9°C in July to 22.8°C in February 
(Rodrigues et al., 2021). The area has reached 
an advanced successional stage following 
complete protection in 1986. The forest 
canopy structure consists of three layers: an 
emergent layer (crowns of isolated trees over 
20 meters high), the middle canopy (crowns 

of trees between 10 and 20 meters high), and 
the understory layer, comprising small trees, 
seedlings, and bushes (Rodrigues et al., 2022).

We included all trees with DBH ≥ 5cm and 
their respective heights to represent the forest 
canopy structure. In this forest census, the x-y 
coordinates of every single tree were mapped 
based on a Cartesian plane. We applied azimuth 
to recover their geographic coordinates within 
the sample’s vertices. In the field, a continuous 
mesh of 100 m² (10x10m) was done to guide 
the forest inventory and the spatial location. 
It covers 86.5% of the study area (Figure 1). 
The AGB was predicted by the Chave et al. 
(2014) equation for tropical forests, which 
considers DBH of trees, wood density, and a 
parameter for environmental stress calculated 
from the geographical coordinates of each 
plot as inputs. The variable response of Wood 
density is derived from the getWoodDensity 
function. The BIOMASS package (Rejou-
Mechain et al., 2017) for R version 4.0.3 was 
applied to calculate the final value of AGC. 
The carbon fraction of biomass had a default 
value of 0.471, corresponding to the individual 
tree carbon weight. The overall value of AGC 
from trees within each plot was extracted to 
hectares (MgC.ha-1).

2.2 Independent variables

We derived AGC estimates from four 
distinct groups of independent variables: 
spectral, hydrological, geographic, and forest 
yield variables. Image data were acquired 
from the MSI/Sentinel-2A satellite. Two 
acquisitions were made annually (dry season 
- July and wet season - November) to mitigate 
the seasonal deciduous effects of some tree 
species. A total of ten spectral bands were 
applied with two spatial resolutions: 10m – 
encompassing Blue, Green, Red, and Near-
infrared (NIR) bands and 20m – comprising 
Red Edges 1 to 4 and Shortwave Infrared 
(SWIR) bands 1 and 2. Subsequently, we 
have used eight vegetation indices: Simple 
Ratio (SR), Normalized Difference Vegetation 
Index (NDVI), Soil Adjusted Difference 
Vegetation Index (SAVI), Atmospherically 
Resistant Vegetation Index (ARVI), Soil and 
Atmospherically Resistant Vegetation Index 
(SARVI), Enhanced Vegetation Index (EVI), 
Triangular Vegetation Index (TVI), and 
Visible Atmospherically Resistant Vegetation 
Index (VARI).



Throughfall (TF) was quantified by 32 
“Ville de Paris” rain gauges strategically 
deployed across the study area. They were 
positioned above ground level at 1.50 m 
and possessed a catching area of 378.5 cm². 
Soil moisture storage (SWS) was evaluated 
employing 32 cylindrical tubes, each with a 
length of 1.0 m, coupled with a multi-sensor 
capacitance Profile Probe (PR2/6 capacitance 
probe, Delta–T Devices, Cambridge, UK). 
These measurements represent monthly 
averages for the two years preceding the 
census and underwent spatial interpolation. 
The spherical semivariogram and Ordinary 
Kriging techniques were used to predict these 
variables spatially within the geoR package 
(Ribeiro Junior et al., 2020). Basal area (G) 
(m².ha⁻¹), defined as the cross-sectional area 
of trees at breast height, served as a stand-
level variable for each plot. 

The forest yield selected variable was the 
basal area, the cross-sectional area of trees 
(g) that describes the stand density/stock 
or competition level. We have defined four 
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diametric percentiles (0, 30th, 60th, and 90th) 
to infer each portion of the forest canopy. 
We incorporated these diametric percentiles 
to investigate the influence of the canopy 
on biomass/carbon stock. In these canopy 
fractions, the upper accumulative percentile 
level represents the sum of all trees larger 
than the DBH position. The 0th percentile 
encompasses all trees, while the 90th percentile 
exclusively incorporates those exceeding the 
90th position (i.e., the largest trees). The basal 
area associated with a particular percentile 
served as an independent variable within the 
model fitting corresponding to that percentile.

2.3 Aboveground carbon stock modeling 
strategies

The dataset was split systematically 
according to the forest structure and the 
original data distribution into training (80%) 
and validation (20%) sets. Later, Pearson’s 
correlation coefficient (r) was applied between 

Figure 1. Study area localization and spatial distribution of grids, trees and pluviometers. 
Coordinate System SAD 1969 UTM Zone 23S

Figura 1. Localização da área de estudo e distribuição espacial de parcelas, árvores e 
pluviômetros. Sistema de Coordenadas SAD 1969 UTM Zona 23S
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all variables to explore their pattern. A total 
of two modeling procedures were fitted for 
each percentile (0th, 30th, 60th, and 90th) 
to describe the relationship between the 
predictive variables and AGC stock. The first 
option was Multiple Linear Regression (MLR) 
within the Stepwise method, an iterative 
process that selects a better set of predictive 
variables to improve the model performance. 
Finally, the variance inflation factor (VIF<5) 
was checked to identify the collinearity in the 
final model. 

In addition, we have employed a hybrid 
methodology known as GA+RF (Genetic 
Algorithm + Random Forest) to address 
the complexities of AGC modeling and 
overcome the limitations of linear regression, 
particularly in managing multiple variables, 
noise, non-linear characteristics, and high-
dimensional databases (Freitas et al., 2020). 
In this approach, we integrated the GA to 
select an optimal subset of variables (feature 
selection technique) to improve and automate 
the RF performance. The multi-objective 
fitness function (Equation 1) was the ratio 
between the Random Forest out-of-bag error 
(OOB error) and the maximum enthalpy of 
OOB error (errorOOBmax). The second term 
of this function relies on the ratio between the 
number of selected variables by GA (n) and 
the total number of tested variables (NVT). 

Previously, the GARF tuning was applied 
to extend the algorithm’s performance. The 
following parameters were set: a) Genetic 
Algorithm: population size (100), selection 
rate (0.5), mutation rate (0.1), selection 
operator (tournament), crossover operators 
(1 cutoff point), and stopping criteria (10 
generations); b) Random Forest: number of 
trees (ntree: 50), number of predictor variables 
sampled randomly in each tree division (mtry: 
2), and minimum number of samples within 
terminal nodes (nodesize: 5). The modeling 
processing was performed in R software and 
the randomForest package (Liaw & Wiener, 
2002). The hardware was an Intel (R) Core 
™ i7-7500U with a processor running at 2.90 
GHz and 8.0 GB of installed RAM.

(Eq. 1)

3. RESULTS

The forest remnant contains 422.62 MgC 
across the 5.46 ha. The AGC values varied 
from 0.37 to 467.71 MgC.ha-1 considering 546 
contiguous samples. The mean AGC values 
for each percentile were 77.40 MgC.ha-1 (0th) 
percentile, 75.33 MgC.ha-1 (30th), 67.91 MgC.
ha-1 (60th), and 40.26 MgC.ha-1 (90th) (Figure 
2).

Figure 2. Boxplot with density of aboveground Carbon stock values (AGC) at each percentile 
(0th,30th, 60th and 90th)

Figura 2. Boxplot com a densidade dos valores de estoque de carbono acima do solo (AGC) 
em cada percentil (0º, 30º, 60º e 90º)



The relationship between independent 
variables and AGC stocks on the diametric 
percentiles is in Table 1. The values highlight a 
strong correlation between basal area (G) and 
AGC (0.97-0.98), as expected for biological 
reasons and the tree’s size, and the remaining 
43 variables showed low Pearson correlations 
(< 0.15). Spectral variables derived from the 
wet season (November) have slightly stronger 
correlations with AGC than those from the dry 
season (July) due to the forest seasonality. The 
SWIR1 (shortwave infrared) exhibited the 
highest correlation with AGB stock among all 
spectral variables (0th and 30th percentiles). 
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Furthermore, the spectral bands red, red edge 
3 and 4 (RE3 and RE4), SWIR2, NIR, and all 
vegetation indices (excluding VARI) displayed 
significant Pearson correlations with AGC. 
This pattern was more consistent for the 0th 
and 30th percentiles during the wet season 
(0.12 - 0.14). This analysis revealed that the 
forest’s spectral response presents a similar 
trend between the 0th and 30th percentiles. 
However, the correlations decreased slightly 
for the 60th and 90th percentiles. Hydrological 
(TF and SWS) and geographic variables 
exhibited no significant correlation with AGC.

Table 1. Pearson correlation’s for aboveground Carbon (AGC) stock in tested percentiles 
and all independent variables

Tabela 1. Correlações de Pearson para estoque de carbono acima do solo (AGC) nos percentis 
testados e todas as variáveis independentes

Variables AGCp0 AGCp30 AGCp60 AGCp90
X -0,09 -0,09 -0,09 -0,06
Y -0,08 -0,1 -0,01 -0,02

Gp0 0,97*** - - -
Gp30 - 0,97*** - -
Gp60 - - 0,98*** -
Gp90 - - - 0,98***

Spectral jul nov jul nov jul nov jul nov
blue -0,05 -0,1 -0,05 -0,1 -0,04 -0,09 0,01 -0,01
green -0,01 0,04 -0,004 -0,04 -0,004 -0,03 0,03 -0,02
red -0,09 -0,12** -0,08 -0,12** -0,07 -0,11 -0,02 -0,04

RE1 -0,06 -0,1 -0,06 -0,1 -0,05 -0,09 0 -0,03
RE2 -0,05 0,11 0,06 0,1 -0,06 0,1 0,04 0,04
RE3 -0,06 0,14** 0,06 0,14** 0,06 0,13** 0,04 0,05
RE4 -0,05 0,13** 0,06 0,13** 0,06 0,12** 0,03 0,03

SWIR1 -0,06 -0,15*** -0,05 -0,15*** -0,04 -0,13** 0,02 -0,03
SWIR2 -0,12** -0,12** -0,12** -0,12** -0,1 -0,1 -0,01 -0,02

NIR -0,07 0,12** 0,07 0,11** 0,07 0,11 0,06 0,06
RS 0,1 0,14** 0,1 0,14** 0,098 0,12** 0,052 0,043

NDVI 0,13** 0,14** 0,12 0,14** 0,12** 0,13*** 0,072 0,047
SAVI 0,13** 0,14** 0,12 0,14** 0,088 0,13** 0,072 0,047
ARVI 0,1 0,13** 0,1 0,12** 0,088 0,11** 0,031 0,038

SARVI 0,1 0,13** 0,1 0,12** 0,008 0,11** 0,031 0,038
EVI 0,1 0,14** 0,1 0,14** 0,099 0,13** 0,059 0,051
TVI 0,1 0,13** 0,1 0,13** 0,1** 0,12** 0,071 0,062

VARI 0,07 0,11** 0,067 0,11 0,055 0,097 -0,005 0,015
Hydrolo-

gical Year1 Year2 Year1 Year2 Year1 Year2 Year1 Year2

TF 0,089 0,04 0,088 0,038 0,085 0,039 0,11 0,051

SWS 0,029 0,054 0,027 0,051 0,028 0,043 -0,04 -0,02
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 Regardless of the modeling approach 
and forest canopy strata, feature selection 
procedures (whether based on statistical or 
computational criteria) consistently prioritize 
basal area (G) and at least one spectral 
variable for AGC stock estimation (Table 2). 
Despite lacking a significant correlation with 
AGC, hydrological variables (TF and SWS) 
and geographics variables (X and Y) were 
selected in some models. The high frequency 
of geographical variables was observed in 
the 0th, 30th, and 60th percentiles for MLR. 

In contrast, GARF selected a hydrological 
variable for the 90th percentile. Regardless of 
the modeling process, the final models have 
high accuracy to predict the AGC. As expected, 
the GA+RF method performed superiorly for 
all sets of percentiles in the training dataset. 
Conversely, MLR has changed this behavior 
for validation datasets in 30th, 60th, and 90th 
percentiles. Additionally, the metrics RMSE 
(%) and R² (%) were lower as the percentile 
increases, meaning that the canopy strata 
gradient affects the model’s predictability.

Table 2. The statistical of the models for training and validation set for each tree stratum 
level

Tabela 2. As estatísticas dos modelos para conjunto de treinamento e validação para cada 
nível de estrato arbóreo

Percentiles Model Database RMSE 
(%)

R² 
(%) N Selected variables Time (s)

0th
MLR *

Training 17.63 94.92
6 G0 + VARI.11 + SWS2 +Y + X + RE2.11 1.87

Validation 17.82 94.77

GA+RF
Training 8.02 98.81

3 G0 + re4.07+ ndvi.07 206
Validation 17.97 95.63

30th
MLR *

Training 16.63 95.48
5 G30 + swir.11 + Y + SWS2 + X 0.99

Validation 16.76 95.36

GA+RF
Training 10.04 98.23

2 G30 + SArVi.11 246
Validation 27.13 90.06

60th
MLR *

Training 15.77 95.94
5 G60 + X + VARI.11 + SWS2 + Y 1.21

Validation 15.99 95.77

GA+RF
Training 14.02 96.55

2 G60 + RE1.07 186
Validation 28.85 88.77

90th
MLR *

Training 38.72 75.49
2 G90 + swir.11 1.44

Validation 38.82 74.66

GA+RF
Training 17.62 90.55

3 G90 + SAVI.07 + TF1 190
Validation 39.88 69.25

The spatial distribution of the best AGC 
estimation method is presented in Figure 3. 
This map reveals an overview of the predictive 
success rate for the tested methods, highlighting 
which method reaches a closer estimation of 
the observed AGC values. The absolute error 
showed that the GA+RF method achieved a 
greater accuracy in the three percentile levels 
(0th – 80%, 30th – 59%, and 90th – 62%). 

The MLR exhibited superior performance 
for the 60th percentile (52%). These results 
are corroborated by the model residuals, 
which indicated a balanced distribution along 
the entire axis for training (Figure 4a-d) and 
validation (Figure 4e-h) datasets. The 90th 
percentile was an exception in both datasets. 

Regardless of the method, the distribution 
error of the training dataset revealed a higher 
density of values in the range of -50 to 50 
MgC.ha-1, except for 90th and samples with 
high AGC stocks. The dataset for validation 
showed inferior accuracy for the canopy strata 
levels (from bottom to top gradient). Overall, 
there is a slight bias toward underestimation 
of AGC stock for both methods, being more 
visible in MLR.

4. DISCUSSION

The mean AGC stock exhibits high 
variability in secondary forests across 
tropical areas. Our results (77.40 MgC.ha-
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Figure 3. Spatial accuracy distribution within plots and percentiles for the best fitted model, 
being: a) Percentile 0th, b) Percentile 30th, c) Percentile 60th, and d) Percentile 90th

Figura 3. Distribuição da precisão espacial dentro das parcelas e percentis para o melhor 
modelo ajustado, sendo: a) Percentil 0º, b) Percentil 30º, c) Percentil 60º e d) Percentil 90º

Figure 4. Residuals plots with marginal histograms for training (a-d) and validation (e-f) 
datasets, where a) and e) – 0th; b) and f) – 30th; c) and g) – 60th; d) and f) – 90th percentile

Figura 4. Gráficos de resíduos com histogramas marginais para conjuntos de dados de 
treinamento (a-d) e validação (e-f), onde a) e e) - 0º; b) e f) - 30º; c) e g) - 60º; d) e f) - percentil 
90º
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¹) are consistent with other studies on Semi-
Deciduous Seasonal Forests, such as 83.34 
MgC.ha-1 (Ribeiro et al., 2009) and 71.81 MgC.
ha-1 (Figueiredo et al., 2015) in Viçosa-MG, and 
55 MgC.ha-1 in average for forest fragments 
located in Minas Gerais state (Scolforo et al., 
2015). The canopy strata levels have a carbon 
pool rate of 97.32%, 87.74%, and 52.02% 
for the 30th, 60th, and 90th percentiles, 
respectively. The two intermediate canopy 
levels explain the greatest carbon stock in this 
forest. Conversely, the dominant trees of each 
sample may also reflect a significant portion 
of the carbon stock. According to Barros et 
al. (2022), these trees have a lower density 
in the forest distribution but contribute as the 
primary carbon sinks.  

The correlation values between spectral 
variables and AGC stock were lower than 
other studies (Chen et al., 2019; Bucha et 
al., 2021; Macave et al., 2022). Most of 
these studies considered large areas with no 
continuous samples. In our study, we found 
that the neighborhood of trees, which may 
extend their sample limits (10x10m) into 
other samples, plays a significant role in the 
correlation values. This is because the canopy 
of the trees could inflate (positive/negative) 
the correlation values for each sample. The 
second factor is associated with the challenge 
of directly linking field-level vegetation data 
to satellite data, primarily due to positional 
uncertainty (Lu et al., 2016; Ploton et al., 
2020). This uncertainty arises due to the 
collection of field and satellite data with 
varying geographic accuracies, potentially 
resulting in misalignment between the two 
data sources. Then, it becomes challenging 
to correlate and integrate the information 
accurately at the pixel level, impacting the 
reliability of analyses and conclusions. 

The alternative to this integration is to 
improve the geospatial precision of field data 
with the use of high-precision GPS and the 
application of geometric corrections to satellite 
images involving the use of known control 
points. Consequently, pixel-based approaches 
often exhibit lower accuracy than object-
oriented approaches (such as fragments, grids, 
or polygons derived from image segmentation) 
(Silveira et al., 2019). Furthermore, a well-
recognized issue of pixel saturation exists, 
wherein pixel spectral reflectance values fail 
to capture changes in biomass for dense and 
multilayer canopy forests, leading to reduced 
accuracy in AGB estimation for values 

exceeding 100-150 Mg.ha⁻¹ (Lu et al., 2016). 

Considering the conversion of tree biomass 
to carbon content (0.471), the AGC values 
between approximately 50 and 70 MgC.ha-1 
are prone to pixel saturation. In our study area, 
62% of samples exhibited values exceeding 
50 MgC.ha-1. In the future, efforts to reduce 
pixel saturation should focus on integrating 
additional variables such as texture measures 
and using active sensors like Synthetic 
Aperture Radar (SAR) and Light Detection 
and Ranging (Lidar) to establish a stronger 
relationship with AGC data (Lu et al., 2016; 
Gosh & Behera, 2018; Tadesse et al., 2020). 
The correlation values of spectral variables 
(the red bands, red edges 3 and 4, SWIR1, 
SWIR2, NIR, vegetation indices except for 
VARI) highlighted the importance of the 
red region and longer wavelengths (near-
infrared and shortwave infrared bands) in 
AGC modeling (Lu et al., 2016). Shortwave 
infrared bands (SWIR1 and SWIR2) mitigate 
saturation effects by being less sensitive to 
atmospheric conditions, but the water level 
of biomass leaf may influence their responses 
(Zhu and Liu, 2015).

The hydrological variables (TF and SWS) 
have no significant correlation with AGC 
stock. However, they were selected at the 
percentile 90th under the GA+RF method. 
The canopy closure process of dominant trees 
may demand more interaction within the soil-
water-plant system, which could justify these 
results. This assessment is supported by Slik 
et al. (2010), who stated that the water stress 
limit has a negative effect on biomass growth 
and correlations with annual rainfall and soil 
moisture storage. Our findings emphasize 
this ecophysiology pattern indirectly, 
where canopy heterogeneity leads to higher 
precipitation interception by dominant trees 
(Junqueira Junior et al., 2019). Conversely, 
light-demanding trees exhibit faster growth 
rates, develop larger crowns, intercept more 
precipitation, and allocate more aboveground 
biomass than shade-tolerant trees (Farrior et 
al., 2013; Jucker et al., 2014). Non-dominant 
trees display a high sensitivity to soil water 
availability, influencing the AGC stock of 
these trees.

Finally, the number of modeling variables 
increases the dimensionality of the dataset, 
which requests a feature selection method to 
reduce the size and keep the relevant variables 
to ensure maximum accuracy (Ahmadi, et 



al., 2020). Variable selection is relevant in 
elucidating which factors influence the carbon 
stock and underlying ecological patterns. 
However, the machine-learning algorithm 
may also detect overfitting over the training 
process. Our findings also detected this issue 
with GA+RF, capturing the relevant patterns 
and the noise and random fluctuations in the 
data. The model generalization usually fails 
to predict over the training dataset, and the 
accuracy of the validation dataset is reduced. 
However, large-scale studies request lower-
cost methodologies with high precision, and 
the integration of geographic, remote sensing, 
and hydrological variables is occasionally 
desirable. Furthermore, the multi-temporal 
and spatial data may also be applied to monitor 
the AGC in tropical forests.

5. CONCLUSION

Our research suggests that varying levels 
of canopy cover influence the accuracy of 
aboveground carbon stock (AGC) models in 
secondary Semi-deciduous Atlantic Forests. 
The 90th percentile showed lower precision 
compared to other tested percentiles. This 
gradient in accuracy is evident across the 
canopy layers (bottom to top) in the validation 
dataset. The geographic, spectral, and 
hydrologic variables have a minimal impact 
on AGC stock in our study area. However, 
both the testing methods and percentile 
levels highlighted the significance of spectral 
variables, suggesting that remote sensing 
indices could be valuable tools for modeling 
AGC stock.
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